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ON PERIODIC MOTIONS OF A GYROSTAT IN A NEWTONIAN FORCE FIELD* 

M. P. TSOPA 

The problem of existence of periodic motions of a gyrostat is studied. The gyrostat 

consists of a rigid body and a rotor, the axis of which is stationary with respect 

to the rigid body in a central Newtonian force field. In /1,2/, Poincark's method 

of small parameter wasusedto show the existence of periodic motions of a gyrostat 
with a single fixed point in a central Newtonian force field. It was assumed that 

the gyrostat differs little from a dynamically symmetric one, and the constant gyro- 

static moment was assumed to be sufficiently small. Moreover, it was assumed that 

the center of gravity of the gyrostat is sufficiently close to the fixed point, and 

the center of attraction is sufficiently far removed from the gyrostat. 

Let us consider a gyrostat /3/ for which the following first integral exists: 

J (0~' $- WI,) = p = eonst 

The integral expresses the constancy of the projection of the absolute angular velocity of the 

rotor on its axis. Here J is the axial moment of inertia of the rotor, CC' is the relative 

angular velocity of the rotor, o is the instantaneous angular velocity of the gyrostat and 

10 is the unit vector in the direction of the rotor axis, The generating solution corres- 

ponds to free Euler-Poinsot rotational motion, and canonical action-angle variables are 

chosen as the independent variables. 
The Hamiltonian of the problem of motion of a gyrostat about a fixed point in a central 

Newtonian force field written in terms of the Andoyer variables Z,,g,, h,, L,, G1, HI /4/, has 

D,=&, El=&, I;,==-& A = A'B'C' - J (B’C’&,,2 -+- A’C’l,,= (- A’B’1,,2) 

A = A’ - Jlo12, B = B’ - Jl$, C 7: C’ - JZ,,z, D = Jlo,lo,, E = J10,Z,9, F == J1,,lo2 

Here A’, B’ , C' are the principal moments of inertia of the gyrostat about the fixed point; 

A,B,C are the moments of inertia of the Joukowski-transformed system; I,,, I,,, l,, are the 

projections of the unitvector I, on the moving coordinate axes; L, and EI, are the projections 
of the kinetic moment G1 of the gyrostat, relative to the fixed point, on the moving and fix- 

ed Z -axis respectively; pand m are the weight and mass of the gyrostat; ~~~~~ and z, are 

the coordinates of the center of gravity of the gyrostat in the fixed coordinate system and 

vi, '&( Ysdenote the direction cosines of the radius vector of the fixed point R originating at 

the center of gravity in the moving coordinate system. 

We pass to the dimensionless variables Kf, L,'. cl', Iii', x,', Y,', z,, t' using the formulas 

K = K'A'tti02, L, = L,'A'to,, G, =z G,'A'w,, H, =-- HI,'A'oo, 1' c m_ .r,.'p, y, -- y,'p, z, -~= z,'p, t' = to, 
where 0 is a constant and 00 is the initial angular velocity of the gyrostat, assumed to be 
sufficiently large in module. 

Now we assume that the rotor axis is almost parallel to the Z-axis of the moving co- 

ordinate system, and introduce a small parameter 1, assuming that 

P[J nf' 
- =I', 
X61; 

-----=xxy 
'mll~o; 

p" --hy 
I--' -I:-_ Ial= %&I, -$ loz = '@. 

where %, h, vl and vg are constants. Omitting the primes in the expressions for the dimension- 

less variables, we write the Hamiltonian function in the form 

K= KO + pKl, 
Cl2 - I.,' 

KO~G~ ( sin211 +-$ COS’E,) + *j K1 =T (asinzII+bcos'I,$ dSinZ!~)-t (1) 
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Here K, is the Hamiltonian defining the generating Euler solution, pKl is the perturbing 

Hamiltonian, and we introduce the following notation: 

A' 
---l=pz, 
Al 

d’(&-+) =pb, +=pd, d’(+--&)=pc. +~e, -$=,L/ 

where a, b,c,d, e, f are known constants. 

We further assume that the inertia ellipsoid of the gyrostat is almost spherical relat- 

ive to the fixed point, and pass to the canonical action-angle variables l,g,h,L,G,H. The 

Hamiltonian of the unperturbed Eulerian motion has the following form in the action-angle 

variables /5,6/: 

(2) 

L = L [ 1 
d 

+ 16 (bx - 1) (b, + 3) + lo’(, “: @I - 1) (3b: - 17b; + 9b, + 69) -t . . ] 

D' 
c=_&-$ ( ),+=A -f($+&), bl=$ 

The Hamiltonian K, describes the Eulerian motion of a rigid body with the principal moments 

of inertia about the fixed point equal to A’, B’, and C’ - J. The generating solution describ- 

ed by this motion has the form 

I, = nr(o)t t_ ml, L, = a,, fro m: n+')t f 02. G, == uz, ILo = og, Ii, = a, 

where 0i and ai are arbitrary constants. The frequencies of the angular variables are: 

(0) _ A’G” 1 
n.L -2 -_++)+L!g[ b, + 1 $- & (5bo” - 9b: -+ Ilbi, + 9) + .] , b,, = 3 

L,L 

When the frequencies aI and n,(o) are commensurable, the motion becomes periodic. 

To prove the existence of periodic solutions of the system of equations with the 

Hamiltonian Cl), coinciding with the generating solution when p = 0, we must express the 

perturbing Hamiltonian yK, in terms of the action-angle variables. To do this we use the 

formulas of the unperturbed Eulerian motion /6/ and obtain the following expression, in the 

form of a series, for the function K,: 

b,,, ,, = l/Gy -L= 

Here hi,,0 is the Kronecker symbol and the quantities dz,,,, 8q,,+1, v,,,o, E,,,~, %,,R, x,,,o, cL~.o, %,TI, 

ci,, 0, cPi8.09 5i,, 0, Ili8, 0 can be represented by known series in increasing powers of the parameter 

E, functions b, acting as the coefficients of these series. The coefficients bi,,Fz appear- 

ing in the expansion of the perturbing Hamiltonian, characterize the inhomogeneity of the 

field, and coincide with the coefficients vi,, Tz of the expansion of the force function U 

/5/. The perturbing Hamiltonian pK, contains, as compared with the Hamiltonian of the 

problem of motion of a gyrostat, with a constant gyrostatic moment /3/, a new harmonic term 

ai,,, sin i,Z . 
The equations of motion admit two integrals, the kinetic energy integral and the angular 

momentum integral, therefore the conditions of existence of periodic Poincare solutions /7/ 

reduce to 
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A&)#O,~=O, a [Kll 0 
dn= , 

3 
&([K,l)#O, l&1=&t 

0 

(5) 

Here Al is the Hessian of the unperturbed Hamiltonian relative to sl and ezr and Aa is 

the Hessian of the mean value of the perturbing Hamiltonian [K,l relative to a3 and 0,. 

The first condition of (5) always holds, except when A’ = B’ = C’ - J, since we have,with 

the accuracy of up to .s2, 

A,(K,)=$$(-&+&)+$ [4(36,+1)+30’(~+~)(b+1)+...]#0 

In order to inspect the remaining conditions of periodicity, we must obtain the mean value 

of the function K, over a single period. The following cases are possible: 

1) (2N - 1) nl(o) = n&O), 2) 2Nnp) = np 

where N is a positive integer. For the mean value of the function [K,l we obtain, respectiv- 

2) [~~]=b~~~(~,~)+bberv,-~cos~~+br~,-~cos2~~-~, rl~=~N%--~a 

The coefficients b,,,, a2~_1,-Ir b2N_l,1, bzczp,_1),-a,b2N,_-lr bdNS_% are defined by the formulas 

(4) in which the action variables are replaced by their unperturbed values ai, a, and a,. 

Now we can easily write the second condition of (5) explicitly as follows: 

1) aZN-l.-lCOS % - b2N-l,_1 Sinql - 2bz(zN-1),_z sin 2~ = 0, 2) sin rlr (ba,v,-i + 4b,N,-, cos Q) = 0 (6) 

From (6) we obtain the unperturbed values of the angle variables 01 and o,.When 1)i.s commen- 

surable, the third condition of (5) can be written as 

M&J,+ H,[M, + M&,2 + M,LJ(H,)I= 0, f (H,) = 1/G: - Hi, 
(7) 

Here M,, h!f,, M,, MS are known constants. We note that when z,=o, then equation (7) is 

clearly satisfied by the solution H, = 0 which, together with the solution o3 = 0, admits 

a simply geometrical interpretation: the vector of the kinetic moment G of the gyrostat re- 

mains, throughout the whole motion, parallel to the abscissa of the fixed coordinate system. 

If on the other hand the gyrostat is fixed at the center of mass, then the coefficients azN-l,-l 

and baN-l,-i become zero and we obtain the following unperturbed values for the angle variabl- 

es: 01 = 0, o*= 0, n/2, n, 3nl2, oQ = 0. 
When 2) is commensurable we have, in particular, the following unperturbed values of the 

angle variables: 01 = 0, 02 = 0, n, o,=o. If X, = y, = z, = 0, then the last condition 

of (5) can be written as 

(G - L) fl (L) fa (L) # 0, fI (L) = mILz + m,L + m3, f,(L) = m,L + m5 (8) 

where ml, m,, mar mp, m5 are known constants. Condition (8) breaks down at a finite number 

of points, namely at L = G and at the points given by the equation fi(L)f,(L) = 0. 
Thus we have shown that the problem of motion of a gyrostat in a central Newtonian force 

field, the study of which was suggested by V. V. Rumiantsev /3/, admits a family of periodic 

solutions. 
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